Serveur sur les données et bibliothèques médicales au Maghreb

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Production and structure prediction of amylases from Chlorella vulgaris.

Identifieur interne : 000020 ( Main/Exploration ); précédent : 000019; suivant : 000021

Production and structure prediction of amylases from Chlorella vulgaris.

Auteurs : Hajer Ben Hlima [Tunisie] ; Aida Karray [Tunisie] ; Mouna Dammak [Tunisie] ; Fatma Elleuch [Tunisie] ; Philippe Michaud [France] ; Imen Fendri [Tunisie] ; Slim Abdelkafi [Tunisie]

Source :

RBID : pubmed:33973124

Abstract

Amylases are enzymes required for starch degradation and are naturally produced by many microorganisms. These enzymes are used in several fields such as food processing, beverage, and medicine as well as in the formulation of enzymatic detergents proving their significance in modern biotechnology. In this study, a three-stage growth mode was applied to enhance starch production and amylase detection from Chlorella vulgaris. Stress conditions applied in the second stage of cultivation led to an accumulation of proteins (75% DW) and starch (21% DW) and a decrease in biomass. Amylase activities were detected and they showed high production levels especially on day 3 (35 U/ml) and day 5 (22.5 U/ml) of the second and third stages, respectively. The bioinformatic tools used to seek amylase protein sequences from TSA database of C. vulgaris revealed 7 putative genes encoding for 4 α-amylases, 2 β-amylases, and 1 isoamylase. An in silico investigation showed that these proteins are different in their lengths as well as in their cellular localizations and oligomeric states though they share common features like CSRs of GH13 family or active site of GH14 family. In brief, this study allowed for the production and in silico characterization of amylases from C. vulgaris.

DOI: 10.1007/s11356-021-14357-9
PubMed: 33973124


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Production and structure prediction of amylases from Chlorella vulgaris.</title>
<author>
<name sortKey="Ben Hlima, Hajer" sort="Ben Hlima, Hajer" uniqKey="Ben Hlima H" first="Hajer" last="Ben Hlima">Hajer Ben Hlima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax</wicri:regionArea>
<wicri:noRegion>Sfax</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karray, Aida" sort="Karray, Aida" uniqKey="Karray A" first="Aida" last="Karray">Aida Karray</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3018, Sfax, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3018, Sfax</wicri:regionArea>
<wicri:noRegion>Sfax</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dammak, Mouna" sort="Dammak, Mouna" uniqKey="Dammak M" first="Mouna" last="Dammak">Mouna Dammak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax</wicri:regionArea>
<wicri:noRegion>Sfax</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elleuch, Fatma" sort="Elleuch, Fatma" uniqKey="Elleuch F" first="Fatma" last="Elleuch">Fatma Elleuch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax</wicri:regionArea>
<wicri:noRegion>Sfax</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Michaud, Philippe" sort="Michaud, Philippe" uniqKey="Michaud P" first="Philippe" last="Michaud">Philippe Michaud</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000, Clermont-Ferrand, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000, Clermont-Ferrand</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fendri, Imen" sort="Fendri, Imen" uniqKey="Fendri I" first="Imen" last="Fendri">Imen Fendri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Plantes Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Plantes Faculté des Sciences de Sfax, Université de Sfax, Sfax</wicri:regionArea>
<wicri:noRegion>Sfax</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abdelkafi, Slim" sort="Abdelkafi, Slim" uniqKey="Abdelkafi S" first="Slim" last="Abdelkafi">Slim Abdelkafi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia. slim.abdelkafi@enis.tn.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax</wicri:regionArea>
<wicri:noRegion>Sfax</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2021">2021</date>
<idno type="RBID">pubmed:33973124</idno>
<idno type="pmid">33973124</idno>
<idno type="doi">10.1007/s11356-021-14357-9</idno>
<idno type="wicri:Area/Main/Corpus">000010</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000010</idno>
<idno type="wicri:Area/Main/Curation">000010</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000010</idno>
<idno type="wicri:Area/Main/Exploration">000010</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Production and structure prediction of amylases from Chlorella vulgaris.</title>
<author>
<name sortKey="Ben Hlima, Hajer" sort="Ben Hlima, Hajer" uniqKey="Ben Hlima H" first="Hajer" last="Ben Hlima">Hajer Ben Hlima</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax</wicri:regionArea>
<wicri:noRegion>Sfax</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Karray, Aida" sort="Karray, Aida" uniqKey="Karray A" first="Aida" last="Karray">Aida Karray</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3018, Sfax, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3018, Sfax</wicri:regionArea>
<wicri:noRegion>Sfax</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dammak, Mouna" sort="Dammak, Mouna" uniqKey="Dammak M" first="Mouna" last="Dammak">Mouna Dammak</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax</wicri:regionArea>
<wicri:noRegion>Sfax</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Elleuch, Fatma" sort="Elleuch, Fatma" uniqKey="Elleuch F" first="Fatma" last="Elleuch">Fatma Elleuch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax</wicri:regionArea>
<wicri:noRegion>Sfax</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Michaud, Philippe" sort="Michaud, Philippe" uniqKey="Michaud P" first="Philippe" last="Michaud">Philippe Michaud</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000, Clermont-Ferrand, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000, Clermont-Ferrand</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Fendri, Imen" sort="Fendri, Imen" uniqKey="Fendri I" first="Imen" last="Fendri">Imen Fendri</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Plantes Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Plantes Faculté des Sciences de Sfax, Université de Sfax, Sfax</wicri:regionArea>
<wicri:noRegion>Sfax</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Abdelkafi, Slim" sort="Abdelkafi, Slim" uniqKey="Abdelkafi S" first="Slim" last="Abdelkafi">Slim Abdelkafi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia. slim.abdelkafi@enis.tn.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax</wicri:regionArea>
<wicri:noRegion>Sfax</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Environmental science and pollution research international</title>
<idno type="eISSN">1614-7499</idno>
<imprint>
<date when="2021" type="published">2021</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Amylases are enzymes required for starch degradation and are naturally produced by many microorganisms. These enzymes are used in several fields such as food processing, beverage, and medicine as well as in the formulation of enzymatic detergents proving their significance in modern biotechnology. In this study, a three-stage growth mode was applied to enhance starch production and amylase detection from Chlorella vulgaris. Stress conditions applied in the second stage of cultivation led to an accumulation of proteins (75% DW) and starch (21% DW) and a decrease in biomass. Amylase activities were detected and they showed high production levels especially on day 3 (35 U/ml) and day 5 (22.5 U/ml) of the second and third stages, respectively. The bioinformatic tools used to seek amylase protein sequences from TSA database of C. vulgaris revealed 7 putative genes encoding for 4 α-amylases, 2 β-amylases, and 1 isoamylase. An in silico investigation showed that these proteins are different in their lengths as well as in their cellular localizations and oligomeric states though they share common features like CSRs of GH13 family or active site of GH14 family. In brief, this study allowed for the production and in silico characterization of amylases from C. vulgaris.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">33973124</PMID>
<DateRevised>
<Year>2021</Year>
<Month>05</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1614-7499</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2021</Year>
<Month>May</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>Environmental science and pollution research international</Title>
<ISOAbbreviation>Environ Sci Pollut Res Int</ISOAbbreviation>
</Journal>
<ArticleTitle>Production and structure prediction of amylases from Chlorella vulgaris.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11356-021-14357-9</ELocationID>
<Abstract>
<AbstractText>Amylases are enzymes required for starch degradation and are naturally produced by many microorganisms. These enzymes are used in several fields such as food processing, beverage, and medicine as well as in the formulation of enzymatic detergents proving their significance in modern biotechnology. In this study, a three-stage growth mode was applied to enhance starch production and amylase detection from Chlorella vulgaris. Stress conditions applied in the second stage of cultivation led to an accumulation of proteins (75% DW) and starch (21% DW) and a decrease in biomass. Amylase activities were detected and they showed high production levels especially on day 3 (35 U/ml) and day 5 (22.5 U/ml) of the second and third stages, respectively. The bioinformatic tools used to seek amylase protein sequences from TSA database of C. vulgaris revealed 7 putative genes encoding for 4 α-amylases, 2 β-amylases, and 1 isoamylase. An in silico investigation showed that these proteins are different in their lengths as well as in their cellular localizations and oligomeric states though they share common features like CSRs of GH13 family or active site of GH14 family. In brief, this study allowed for the production and in silico characterization of amylases from C. vulgaris.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ben Hlima</LastName>
<ForeName>Hajer</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Karray</LastName>
<ForeName>Aida</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3018, Sfax, Tunisia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dammak</LastName>
<ForeName>Mouna</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Elleuch</LastName>
<ForeName>Fatma</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Michaud</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000, Clermont-Ferrand, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fendri</LastName>
<ForeName>Imen</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Plantes Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abdelkafi</LastName>
<ForeName>Slim</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0003-1314-0523</Identifier>
<AffiliationInfo>
<Affiliation>Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia. slim.abdelkafi@enis.tn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2021</Year>
<Month>05</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Environ Sci Pollut Res Int</MedlineTA>
<NlmUniqueID>9441769</NlmUniqueID>
<ISSNLinking>0944-1344</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bioinformatic tools</Keyword>
<Keyword MajorTopicYN="N">Culture mode</Keyword>
<Keyword MajorTopicYN="N">Enzymes</Keyword>
<Keyword MajorTopicYN="N">Glycoside hydrolase</Keyword>
<Keyword MajorTopicYN="N">Microalgae</Keyword>
<Keyword MajorTopicYN="N">Molecular modeling</Keyword>
<Keyword MajorTopicYN="N">Starch</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2021</Year>
<Month>01</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2021</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2021</Year>
<Month>5</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>42</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2021</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2021</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33973124</ArticleId>
<ArticleId IdType="doi">10.1007/s11356-021-14357-9</ArticleId>
<ArticleId IdType="pii">10.1007/s11356-021-14357-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Abdelkafi S, Chamkha M, Casalot L, Sayadi S, Labat M (2005) Isolation and characterization of a novel Bacillus sp., strain YAS1, capable of transforming tyrosol under hypersaline conditions. FEMS Microbiol Lett 252 (1):79–84.  https://doi.org/10.1016/j.femsle.2005.08.032</Citation>
</Reference>
<Reference>
<Citation>Abdelkafi S, Labat M, Ben Ali Z, Lorquin J, Saydi S (2008) Optimized conditions for the synthesis of vanillic acid under hypersaline conditions by Halomonas elongata DSM 2581T resting cells. World J Microbiol Biotechnol 24:675–680. https://doi.org/10.1007/s11274-007-9523-3</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s11274-007-9523-3</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Abreu AP, Fernandes B, Vicente AA, Teixeira J, Dragone G (2012) Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresour Technol 118:61–66. https://doi.org/10.1016/j.biortech.2012.05.055</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.biortech.2012.05.055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aikawa S, Izumi Y, Matsuda F, Hasunuma T, Chang JS, Kondo A (2012) Synergistic enhancement of glycogen production in Arthrospira platensis by optimization of light intensity and nitrate supply. Bioresour Technol 108:211–215. https://doi.org/10.1016/j.biortech.2012.01.004</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.biortech.2012.01.004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Andersen R, Kawachi M (2005) Traditional microalgae isolation techniques. Algal Culturing Techniques, In, pp 83–100</Citation>
</Reference>
<Reference>
<Citation>Behrens PW, Bingham SE, Hoeksema SD, Cohoon DL, Cox JC (1989) Studies on the incorporation of CO
<sub>2</sub>
into starch by Chlorella vulgaris. J Appl Phycol 1:123–130. https://doi.org/10.1007/BF00003874</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/BF00003874</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ben Halima N, Borchani M, Fendri I, Khemakhem B, Gosset D, Baril P, Pichon C, Ayadi MA, Abdelkafi S (2015) Optimised amylases extraction from oat seeds and its impact on bread properties. Int J Biol Macromol 72:1213–1221. https://doi.org/10.1016/j.ijbiomac.2014.10.018</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijbiomac.2014.10.018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ben Halima N, Khemakhem B, Fendri I, Ogata H, Baril P, Pichon C, Abdelkafi S (2016) Identification of a new oat β-amylase by functional proteomics. Biochim Biophys Acta, Proteins Proteomics 1864:52–61. https://doi.org/10.1016/j.bbapap.2015.10.001</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.bbapap.2015.10.001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ben Hlima H, Bohli T, Kraiem M, Ouederni A, Mellouli L, Michaud P, Abdelkafi S, Smaoui S (2019a) Combined effect of Spirulina platensis and Punica granatum peel extracts: phytochemical content and antiphytophatogenic activity. Appl Sci 9:5475. https://doi.org/10.3390/app9245475</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3390/app9245475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ben Hlima H, Dammak M, Karkouch N, Hentati F, Laroche C, Michaud P, Fendri I, Abdelkafi S (2019b) Optimal cultivation towards enhanced biomass and Floridean starch production by Porphyridium marinum. Int J Biol Macromol 129:152–161. https://doi.org/10.1016/j.ijbiomac.2019.01.207</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijbiomac.2019.01.207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ben Hlima H, Dammak M, Karray A, Drira M, Michaud P, Fendri I, Abdelkafi S (2021) Molecular and structural characterizations of lipases from Chlorella by functional genomics. Mar Drugs 19(2):70. https://doi.org/10.3390/md19020070</Citation>
</Reference>
<Reference>
<Citation>Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1006/abio.1976.9999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brányiková I, Maršálková B, Doucha J, Brányik T, Bišová K, Zachleder V, Vítová M (2011) Microalgae novel highly efficient starch producers. Biotechnol Bioeng 108:766–776. https://doi.org/10.1002/bit.23016</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/bit.23016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brasil B d SAF, de Siqueira FG, TFC S, Zanette CM, Spier MR (2017) Microalgae and cyanobacteria as enzyme biofactories. Algal Res 25:76–89. https://doi.org/10.1016/j.algal.2017.04.035</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.algal.2017.04.035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cheng D, Li D, Yuan Y, Zhou L, Li X, Wu T, Wang L, Zhao Q, Wei W, Sun Y (2017) Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution. Biotechnol Biofuels 10:75. https://doi.org/10.1186/s13068-017-0753-9</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/s13068-017-0753-9</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786. https://doi.org/10.1111/j.1432-1033.1996.00779.x</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/j.1432-1033.1996.00779.x</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Coesel SN, Baumgartner AC, Teles LM, Ramos AA, Henriques NM, Cancela L, Varela JCS (2008) Nutrient limitation is the main regulatory factor for carotenoid accumulation and for Psy and Pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar Biotechnol N Y N 10:602–611. https://doi.org/10.1007/s10126-008-9100-2</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s10126-008-9100-2</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cysewski GR, Lorenz RT (2003) Industrial production of microalgal cell-mass and secondary products - species of high potential: Haematococcus. In: Handbook of Microalgal Culture. John Wiley & Sons, Ltd, pp 281–288</Citation>
</Reference>
<Reference>
<Citation>Daliry S, Hallajsani A, Mohammadi RJ, Nouri H, Golzary A (2017) Investigation of optimal condition for Chlorella vulgaris microalgae growth. Glob J Environ Sci Manag 3:217–230. https://doi.org/10.22034/gjesm.2017.03.02.010</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.22034/gjesm.2017.03.02.010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dammak M, Haase SM, Miladi R, Ben Amor F, Barkallah M, Gosset D, Pichon C, Huchzermeyer B, Fendri I, Denis M, Abdelkafi S (2016) Enhanced lipid and biomass production by a newly isolated and identified marine microalga. Lipids Health Dis:15. https://doi.org/10.1186/s12944-016-0375-4</Citation>
</Reference>
<Reference>
<Citation>Dammak M, Hadrich B, Miladi R, Barkallah M, Hentati F, Hachicha R, Laroche C, Michaud P, Fendri I, Abdelkafi S (2017) Effects of nutritional conditions on growth and biochemical composition of Tetraselmis sp. Lipids Health Dis 16:41. https://doi.org/10.1186/s12944-016-0378-1</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/s12944-016-0378-1</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dammak M, Hadrich B, Barkallah M, Hentati F, Ben Hlima H, Pichon C, Denis M, Fendri I, Michaud P, Abdelkafi S (2018) Modelling Tetraselmis sp. growth-kinetics and optimizing bioactive-compound production through environmental conditions. Bioresour Technol 249:510–518. https://doi.org/10.1016/j.biortech.2017.10.028</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.biortech.2017.10.028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>de Andrade CJ, de Andrade LM (2017) An overview on the application of genus Chlorella in biotechnological processes. J Adv Res Biotechnol 2:1–9. https://doi.org/10.15226/2475-4714/2/1/00117</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.15226/2475-4714/2/1/00117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Delkash-Roudsari S, Zibaee A, Mozhdehi MRA (2014) Digestive α-amylase of Bacterocera oleae Gmelin (Diptera: Tephritidae): biochemical characterization and effect of proteinaceous inhibitor. J King Saud Univ - Sci 26:53–58. https://doi.org/10.1016/j.jksus.2013.05.003</Citation>
</Reference>
<Reference>
<Citation>Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335. https://doi.org/10.1016/j.apenergy.2011.03.012</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.apenergy.2011.03.012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elleuch F, Ben Hlima H, Barkallah M, Baril P, Abdelkafi S, Pichon C, Fendri I (2019) Carotenoids overproduction in Dunaliella Sp.: transcriptional changes and new insights through lycopene β cyclase regulation. Appl Sci 9:5389. https://doi.org/10.3390/app9245389</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.3390/app9245389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016. https://doi.org/10.1006/jmbi.2000.3903</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1006/jmbi.2000.3903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fendri I, Chaari A, Dhouib A, Jlassi B, Abousalham A, Carriere F, Sayadi S, Abdelkafi S (2010) Isolation, identification and characterization of a new lipolytic Pseudomonas sp., strain AHD-1, from Tunisian soil. Environ Technol 31:87–95. https://doi.org/10.1080/09593330903369994</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1080/09593330903369994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, Gough J (2017) InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45:D190–D199. https://doi.org/10.1093/nar/gkw1107</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/nar/gkw1107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gaignard C, Gargouch N, Dubessay P, Delattre C, Pierre G, Laroche C, Fendri I, Abdelkafi S, Michaud P (2019) New horizons in culture and valorization of red microalgae. Biotechnol Adv 37:193–222. https://doi.org/10.1016/j.biotechadv.2018.11.014</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.biotechadv.2018.11.014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gouet P, Robert X, Courcelle E (2003) ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins. Nucleic Acids Res 31:3320–3323. https://doi.org/10.1093/nar/gkg556</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/nar/gkg556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Griffiths MJ, van Hille RP, Harrison STL (2014) The effect of nitrogen limitation on lipid productivity and cell composition in Chlorella vulgaris. Appl Microbiol Biotechnol 98:2345–2356. https://doi.org/10.1007/s00253-013-5442-4</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00253-013-5442-4</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gronau I, Moran S (2007) Optimal implementations of UPGMA and other common clustering algorithms. Inf Process Lett 104:205–210. https://doi.org/10.1016/j.ipl.2007.07.002</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ipl.2007.07.002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Grudzinski W, Krzeminska I, Luchowski R, Nosalewicz A, Gruszecki WI (2016) Strong-light-induced yellowing of green microalgae Chlorella: a study on molecular mechanisms of the acclimation response. Algal Res 16:245–254. https://doi.org/10.1016/j.algal.2016.03.021</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.algal.2016.03.021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gschloessl B, Guermeur Y, Cock JM (2008) HECTAR: a method to predict subcellular targeting in heterokonts. BMC Bioinformatics 9:393. https://doi.org/10.1186/1471-2105-9-393</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1186/1471-2105-9-393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animals. Springer, Boston, MA, pp 29–60</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/978-1-4615-8714-9_3</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ho S-H, Chen C-Y, Chang J-S (2012) Effect of light intensity and nitrogen starvation on CO
<sub>2</sub>
fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252. https://doi.org/10.1016/j.biortech.2011.11.133</Citation>
</Reference>
<Reference>
<Citation>Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang JS (2013) Characterization and optimization of carbohydrate production from an indigenous microalga Chlorella vulgaris FSP-E. Bioresour Technol 135:157–165. https://doi.org/10.1016/j.biortech.2012.10.100</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.biortech.2012.10.100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hu Q (2003) Environmental effects on cell composition. In: Handbook of Microalgal Culture. John Wiley & Sons, Ltd, pp 83–94</Citation>
</Reference>
<Reference>
<Citation>Janeček Š (2002) How many conserved sequence regions are there in the α-amylase family. Biologia (Bratisl) 57:29–41</Citation>
</Reference>
<Reference>
<Citation>Jerez CG, Malapascua JR, Sergejevová M, Figueroa FL, Masojídek J (2016) Effect of nutrient starvation under high irradiance on lipid and starch accumulation in Chlorella fusca (Chlorophyta). Mar Biotechnol N Y N 18:24–36. https://doi.org/10.1007/s10126-015-9664-6</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s10126-015-9664-6</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Joo G, Lee W, Choi Y (2021) Heavy metal adsorption capacity of powdered Chlorella vulgaris biosorbent: effect of chemical modification and growth media. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-12396-w</Citation>
</Reference>
<Reference>
<Citation>Katoh K, Kuma KI, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518. https://doi.org/10.1093/nar/gki198</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/nar/gki198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Kottenhagen N, Gramzow L, Horn F, Pohl M, Günter T (2012) Polyglutamine and polyalanine tracts are enriched in transcription factors of plants:15 pages. https://doi.org/10.4230/OASICS.GCB.2012.93</Citation>
</Reference>
<Reference>
<Citation>Kralj S, Grijpstra P, van Leeuwen SS, Leemhuis H, Dobruchowska JM, van der Kaaij RM, Malik A, Oetari A, Kamerling JP, Dijkhuizen L (2011) 4,6-α-Glucanotransferase, a novel enzyme that structurally and functionally provides an evolutionary link between glycoside hydrolase enzyme families 13 and 70. Appl Environ Microbiol 77:8154–8163. https://doi.org/10.1128/AEM.05735-11</Citation>
</Reference>
<Reference>
<Citation>Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen J Mol Biol 305:567–580. https://doi.org/10.1006/jmbi.2000.4315</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1006/jmbi.2000.4315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. https://doi.org/10.1107/S0021889892009944</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1107/S0021889892009944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Li T, Gargouri M, Feng J, Park JJ, Gao D, Miao C, Dong T, Gang DR, Chen S (2015) Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana. Bioresour Technol 180:250–257. https://doi.org/10.1016/j.biortech.2015.01.005</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.biortech.2015.01.005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lin P-Y, Tsai C-T, Chuang W-L, Chao YH, Pan IH, Chen YK, Lin CC, Wang BY (2017) Chlorella sorokiniana induces mitochondrial-mediated apoptosis in human non-small cell lung cancer cells and inhibits xenograft tumor growth in vivo. BMC Complement Altern Med:17. https://doi.org/10.1186/s12906-017-1611-9</Citation>
</Reference>
<Reference>
<Citation>Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. https://doi.org/10.1093/nar/gkt1178</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/nar/gkt1178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lü B, Guo Z, Liang J (2008) Effects of the activities of key enzymes involved in starch biosynthesis on the fine structure of amylopectin in developing rice (Oryza sativa L.) endosperms. Sci China C Life Sci 51:863–871. https://doi.org/10.1007/s11427-008-0120-y</Citation>
</Reference>
<Reference>
<Citation>Lv J-M, Cheng L-H, Xu X-H, Zhang L, Chen HL (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour Technol 101:6797–6804. https://doi.org/10.1016/j.biortech.2010.03.120</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.biortech.2010.03.120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Majzlová K, Pukajová Z, Janeček S (2013) Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Carbohydr Res 367:48–57. https://doi.org/10.1016/j.carres.2012.11.022</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.carres.2012.11.022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542. https://doi.org/10.1016/j.biotechadv.2013.07.011</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.biotechadv.2013.07.011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Meng X, Gangoiti J, Bai Y, Pijning T, Van Leeuwen SS, Dijkhuizen L (2016) Structure–function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cell Mol Life Sci 73:2681–2706. https://doi.org/10.1007/s00018-016-2245-7</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s00018-016-2245-7</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metin K, Koç O, Ateşlier BB, Biyik HH (2010) Purification and characterization of α-amylase produced by Penicillium citrinum HBF62. Afr J Biotechnol 9:7692–7701. https://doi.org/10.5897/AJB09.1687</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.5897/AJB09.1687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1021/ac60147a030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mohseni A, Kube M, Fan L, Roddick FA (2020) Potential of Chlorella vulgaris and Nannochloropsis salina for nutrient and organic matter removal from municipal wastewater reverse osmosis concentrate. Environ Sci Pollut Res 27:26905–26914. https://doi.org/10.1007/s11356-020-09103-6</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s11356-020-09103-6</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Monroe JD, Storm AR (2018) Review: the arabidopsis β-amylase (BAM) gene family: diversity of form and function. Plant Sci 276:163–170. https://doi.org/10.1016/j.plantsci.2018.08.016</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.plantsci.2018.08.016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Morris HJ, Almarales A, Carrillo O, Bermúdez RC (2008) Utilisation of Chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates. Bioresour Technol 99:7723–7729. https://doi.org/10.1016/j.biortech.2008.01.080</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.biortech.2008.01.080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Moulis C, Joucla G, Harrison D, Fabre E, Potocki-Veronese G, Monsan P, Remaud-Simeon M (2006) Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases. J Biol Chem 281:31254–31267. https://doi.org/10.1074/jbc.M604850200</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1074/jbc.M604850200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nakamura Y (1996) Some properties of starch debranching enzymes and their possible role in amylopectin biosynthesis. Plant Sci 121:1–18. https://doi.org/10.1016/S0168-9452(96)04504-9</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S0168-9452(96)04504-9</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nayak M, Suh WI, Chang YK, Lee B (2019) Exploration of two-stage cultivation strategies using nitrogen starvation to maximize the lipid productivity in Chlorella sp. HS2. Bioresour Technol 276:110–118. https://doi.org/10.1016/j.biortech.2018.12.111</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.biortech.2018.12.111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nehmé R, Atieh C, Fayad S, Claude B, Chartier A, Tannoury M, Elleuch F, Abdelkafi S, Pichon C, Morin P (2017) Microalgae amino acid extraction and analysis at nanomolar level using electroporation and capillary electrophoresis with laser-induced fluorescence detection. J Sep Sci 40(2):558–566. https://doi.org/10.1002/jssc.201601005</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/jssc.201601005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nomaguchi T, Maeda Y, Liang Y, Yoshino T, Asahi T, Tanaka T (2018) Comprehensive analysis of triacylglycerol lipases in the oleaginous diatom Fistulifera solaris JPCC DA0580 with transcriptomics under lipid degradation. J Biosci Bioeng 126:258–265. https://doi.org/10.1016/j.jbiosc.2018.03.003</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.jbiosc.2018.03.003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Panahi Y, Yari Khosroushahi A, Sahebkar A, Heidari HR (2019) Impact of cultivation condition and media content on Chlorella vulgaris composition. Adv Pharm Bull 9:182–194. https://doi.org/10.15171/apb.2019.022</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.15171/apb.2019.022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pelassa I, Corà D, Cesano F, Monje FJ, Montarolo PG, Fiumara F (2014) Association of polyalanine and polyglutamine coiled coils mediates expansion disease-related protein aggregation and dysfunction. Hum Mol Genet 23:3402–3420. https://doi.org/10.1093/hmg/ddu049</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/hmg/ddu049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. https://doi.org/10.1038/nmeth.1701</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/nmeth.1701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ponnuchamy K, Muthiah R, Kumaraguru A (2010) Solvent extraction and spectrophotometric determination of pigments of some algal species from the shore of Puthumadam, Southeast coast of India. Int J Oceans Oceanogr 1:29–34</Citation>
</Reference>
<Reference>
<Citation>Priyadarshini S, Ray P (2019) Exploration of detergent-stable alkaline α-amylase AA7 from Bacillus sp strain SP-CH7 isolated from Chilika Lake. Int J Biol Macromol 140:825–832. https://doi.org/10.1016/j.ijbiomac.2019.08.006</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.ijbiomac.2019.08.006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Puspasari F, Radjasa OK, Noer AS, Nurachman Z, Syah YM, van der Maarel MJEC, Dijkhuizen L, Janecek S, Natalia D (2013) Raw starch-degrading α-amylase from Bacillus aquimaris MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. J Appl Microbiol 114:108–120. https://doi.org/10.1111/jam.12025</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1111/jam.12025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ramachandran GT, Sasisekharan V (1968) Conformation of polypeptides and proteins. Adv Protein Chem 23:283–437. https://doi.org/10.1016/S0065-3233(08)60402-7</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/S0065-3233(08)60402-7</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ranjani V, Janeček Š, Chai KP, Shahir S, Rahman RNZRA, Chan KG, Goh KM (2014) Protein engineering of selected residues from conserved sequence regions of a novel Anoxybacillus α-amylase. Sci Rep 4:5850. https://doi.org/10.1038/srep05850</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1038/srep05850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rombel IT, Sykes KF, Rayner S, Johnston SA (2002) ORF Finder: a vector for high-throughput gene identification. Gene 282:33–41. https://doi.org/10.1016/s0378-1119(01)00819-8</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/s0378-1119(01)00819-8</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Salem K, Elgharbi F, Ben Hlima H, Perduca M, Sayari A, Hmida-Sayari A (2020) Biochemical characterization and structural insights into the high substrate affinity of a dimeric and Ca2+ independent Bacillus subtilis α-amylase. Biotechnol Prog 36:e2964. https://doi.org/10.1002/btpr.2964</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/btpr.2964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Savojardo C, Bruciaferri N, Tartari G, Perduca M, Sayari A, Hmida-Sayari A (2020) DeepMito: accurate prediction of protein sub-mitochondrial localization using convolutional neural networks. Bioinformatics 36:56–64. https://doi.org/10.1093/bioinformatics/btz512</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/bioinformatics/btz512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sim L, Beeren SR, Findinier J, Dauvillée D, Ball SG, Henriksen A, Palcic MM (2014) Crystal structure of the Chlamydomonas starch debranching enzyme isoamylase ISA1 reveals insights into the mechanism of branch trimming and complex assembly. J Biol Chem 289:22991–23003. https://doi.org/10.1074/jbc.M114.565044</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1074/jbc.M114.565044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Song H-N, Jung T-Y, Park J-T, Park PC, Myung PK, Boos W, Woo EJ, Park KH (2010) Structural rationale for the short branched substrate specificity of the glycogen debranching enzyme GlgX. Proteins 78:1847–1855. https://doi.org/10.1002/prot.22697</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1002/prot.22697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stam MR, Danchin EGJ, Rancurel C, Coutinho PM, Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel PEDS 19:555–562. https://doi.org/10.1093/protein/gzl044</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1093/protein/gzl044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sunaga Y, Maeda Y, Yabuuchi T, Muto M, Yoshino T, Tanaka T (2015) Chloroplast-targeting protein expression in the oleaginous diatom Fistulifera solaris JPCC DA0580 toward metabolic engineering. J Biosci Bioeng 119:28–34. https://doi.org/10.1016/j.jbiosc.2014.06.008</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.jbiosc.2014.06.008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Takeshita T, Ota S, Yamazaki T, Hirata A, Zachleder V, Kawano S (2014) Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour Technol 158:127–134. https://doi.org/10.1016/j.biortech.2014.01.135</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1016/j.biortech.2014.01.135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Takeshita T, Takeda K, Ota S, Yamazaki T, Kawano S (2015) A simple method for measuring the starch and lipid contents in the cell of microalgae. Cytologia (Tokyo) 80:475–481. https://doi.org/10.1508/cytologia.80.475</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1508/cytologia.80.475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Woo E-J, Lee S, Cha H, Park JT, Yoon SM, Song HN, Park KH (2008) Structural insight into the bifunctional mechanism of the glycogen-debranching enzyme TreX from the Archaeon Sulfolobus solfataricus. J Biol Chem 283:28641–28648. https://doi.org/10.1074/jbc.M802560200</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1074/jbc.M802560200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Zhu S, Wang Y, Huang W, Xu J, Wang Z, Xu J, Yuan Z (2014) Enhanced accumulation of carbohydrate and starch in Chlorella zofingiensis induced by nitrogen starvation. Appl Biochem Biotechnol 174:2435–2445. https://doi.org/10.1007/s12010-014-1183-9</Citation>
<ArticleIdList>
<ArticleId IdType="doi">10.1007/s12010-014-1183-9</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>Tunisie</li>
</country>
<region>
<li>Auvergne (région administrative)</li>
<li>Auvergne-Rhône-Alpes</li>
</region>
<settlement>
<li>Clermont-Ferrand</li>
</settlement>
</list>
<tree>
<country name="Tunisie">
<noRegion>
<name sortKey="Ben Hlima, Hajer" sort="Ben Hlima, Hajer" uniqKey="Ben Hlima H" first="Hajer" last="Ben Hlima">Hajer Ben Hlima</name>
</noRegion>
<name sortKey="Abdelkafi, Slim" sort="Abdelkafi, Slim" uniqKey="Abdelkafi S" first="Slim" last="Abdelkafi">Slim Abdelkafi</name>
<name sortKey="Dammak, Mouna" sort="Dammak, Mouna" uniqKey="Dammak M" first="Mouna" last="Dammak">Mouna Dammak</name>
<name sortKey="Elleuch, Fatma" sort="Elleuch, Fatma" uniqKey="Elleuch F" first="Fatma" last="Elleuch">Fatma Elleuch</name>
<name sortKey="Fendri, Imen" sort="Fendri, Imen" uniqKey="Fendri I" first="Imen" last="Fendri">Imen Fendri</name>
<name sortKey="Karray, Aida" sort="Karray, Aida" uniqKey="Karray A" first="Aida" last="Karray">Aida Karray</name>
</country>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Michaud, Philippe" sort="Michaud, Philippe" uniqKey="Michaud P" first="Philippe" last="Michaud">Philippe Michaud</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/MaghrebDataLibMedV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000020 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000020 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    MaghrebDataLibMedV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33973124
   |texte=   Production and structure prediction of amylases from Chlorella vulgaris.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33973124" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MaghrebDataLibMedV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Jun 17 16:21:50 2021. Site generation: Thu Jun 17 21:51:18 2021